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We present nonlocal discrete transparent boundary conditions for a fourth-order
wide-angle approximation of the two-dimensional Helmholtz equation. The bound-
ary conditions are exact in the sense that they supply the same discrete solution
on a bounded interior domain as would be obtained by considering the problem on
the entire unbounded domain with zero boundary conditions at infinity. The pro-
posed algorithm results in an unconditionally stable propagation method. Numerical
examples from optics illustrate the efficiency of our approach.c© 2000 Academic Press
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1. INTRODUCTION

Many time-harmonic scattering and wave propagation problems in electromagnetics,
optics, and acoustics can be modeled by the scalar Helmholtz equation. If the problem
under investigation has a dominant scattering aspect, e.g., the scattering of a beam from an
arbitrary-shaped particle, the full Helmholtz equation must generally be solved as a bound-
ary value problem on an unbounded domain. This requires scattering-theory approaches
such as boundary element methods [1], infinite element methods [6], or methods for solving
the interior problem subject to Dirichlet-to-Neumann radiation boundary conditions [10].

However if a dominant wave-guiding mechanism is present, the Helmholtz equation is
typically approximated either by the paraxial wave equation or by wide-angle equations.
Such one-way approximations reformulate the original boundary value problem as an initial
boundary value problem. Such a transformation, when applicable, replaces the second partial
derivative operator with respect to the propagation direction in the Helmholtz equation with
a first derivative. As a result, propagation algorithms can be applied that require far less
memory than the numerical realization of the full scattering problem.
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In approximating the Helmholtz equation by a paraxial or wide-angle equation, we must
address two issues:

(i) The relationship between the Helmholtz operator and various wide-angle operators.
(ii) The construction of boundary conditions that suppress artificial reflections at the

boundary of the computational domain.

Since the first topic has been the subject of detailed investigation [8], we will here consider
the wide-angle operator as given regardless of its approximation properties and concentrate
on the second of the above issues.

Initial attempts to provide transparent boundary conditions for the lowest order wide-
angle equation resulting from the [1, 1]-Pad´e approximation of the (pseudo-differential)
square-root Helmholtz operator were provided by Papadakis [13], Yevick and Thomson
[18], and Arnold and Ehrhardt [2]. In the last of these references derivations of both the
well-posedness of the wide-angle equation based on the [1, 1]-Pad´e approximation is proved
and the computational form of the discrete transparent boundary conditions is given. Un-
fortunately, the authors’ presentation is rather complex as a result of their use of the direct
and inverse Laplace transforms with respect to the propagation coordinate. Similar con-
siderations apply to transparent boundary conditions for time domain simulations of wave
propagation problems as outlined in [7].

The main goal of the present paper is to extend our previous derivation of transpar-
ent boundary conditions for the paraxial (Schr¨odinger) equation [14] in a straightforward
manner to wide-angle operators that contain a fourth-order derivative with respect to the
spatial (transverse) variable. Our approach requires Laplace transforms only in the trans-
verse direction and, in contrast to the above-mentioned methods, does not require an inverse
Laplace transformation. Our derivation is further simplified through the introduction of a
shift operator along the propagation direction as described in Ref. [16]. To our knowl-
edge, no other exact transparent boundary condition has been derived for a fourth-order
wide-angle method. Additionally, to discretize the fourth-order transverse derivative, cubic
C1-elements are required while our paraxial analysis is instead based on continuous linear
finite elements [14]. The cubicC1-element formulation is of interest, however, even for
the solution of second-order equations because of the far greater accuracy attainable with
cubic elements. The fourth-order problem thus provides insight into generalizations of the
paraxial algorithm that are required to attain greater accuracy or to solve more general
higher order wide-angle problems.

Another procedure for implementing wide-angle approximations involves recasting wide-
angle representations of the Helmholtz operator, that can be of arbitrarily high transverse
order, as products or sums of expressions involving only second-order transverse derivatives
[4]. A generalization of Ref. [14] applicable to such operator-splitting techniques is exam-
ined in a companion paper [15], which considers arbitrary rational Pad´e approximations for
the square-root Helmholtz operator. Finally, it should be noted that numerous alternative
approaches exist to the solution of the interior problem. Some examples of these are the
Engquist–Majda-type local approximation based on Pad´e approximants [5], the factorized
boundary conditions of Higdon [9], and the perfectly matched layers of B´erenger [3]. How-
ever, in contrast to our procedure, these methods do not involve an implicit determination
of the corresponding exterior solution and cannot be adjusted according to the structure of
the underlying propagation algorithm.
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2. PRELIMINARY CONSIDERATIONS

In accordance with the discussion of the previous section, we consider the one-way
Helmholtz equation

u′ = i
√

P u, u(0) = u0,

whereu′ denotes the derivative ofu with respect toz, and the operatorP is given by

P = ∂2

∂x2
+ f (x).

Settingv = exp(−i
√
µ z)u yields the initial value problem

v′ = i(
√

P −√µ)v = i
√
µ

(√
1+ P − µ

µ
− 1

)
v, v(0) = v0 = u0,

for the functionv. To obtain the wide-angle equation of interest in this paper, the square-root
expression is replaced by its [2, 0]-Padé approximant, which corresponds to the quadratic
Taylor polynomial

√
1+ ζ − 1≈ 1

2
ζ − 1

8
ζ 2.

The starting point of our investigations is thus formed by the initial value problem

v′ = i
√
µ

2

[(
P − µ
µ

)
− 1

4

(
P − µ
µ

)2 ]
v, v(0) = v0. (1)

We assume that the functionf is real, bounded, and positive, and that the parameterµ, to
be characterized later, is real and positive.

The principal goal of this paper is to solve (1) numerically on a computational domain
{(x, z) ∈ R2: x− < x < x+, z≥ 0} such that the boundary condition

lim
x→±∞ v(x, z) = 0, ∀z≥ 0 (2)

at infinity is fulfilled subject to the additional assumptions:

(i) The function f is equal to the constant valueµ in the two external domainsx ≤ x−
andx ≥ x+.

(ii) The initial valuev0 is supported inÄ = (x−, x+).

As a result of the above two conditions, the Laplace transforms ofv possess a simple
algebraic structure that we will exploit in Section 3.2 to facilitate the derivation of our
subsequent boundary condition. For notational simplicity, we specialize to the casef = µ.
The more general conditionf = const, f 6= µ, is considered in the context of an analysis of
higher order Pad´e approximations in [15]. In a similar manner, we have imposed condition
ii) to simplify our calculations. While condition ii) may in fact be relaxed for some initial
fields with noncompact support, additional inhomogeneous parts in the final results (14) and
(15) for the nonlocal boundary conditions are generated, as can be seen from the analysis of
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[11]. This reference presents a transparent boundary condition based on the [1, 0]-Padé-type
approximation to the propagation operator that is valid for initial fields with non-compact
support and even for media with a linear dependence on the transverse coordinate. However,
the derivation that is followed first applies a Laplace transform in the propagation direction
after which the resulting differential equation is solved directly. As a result, an inverse
Laplace transform is required to obtain the desired boundary condition in contrast to the
method employed in this paper. In order to guarantee the desired decay of the solution
towards infinity, appropriate boundary conditions must be imposed on the functionv at the
finite boundary pointsx±. We remark that our derivation of these conditions is not restricted
to the case of condition i) and can be extended to arbitrary values of the parameterµ.

2.1. Implicit Midpoint Discretization

As the first step towards deriving our transparent boundary conditions, we assume that
problem (1) has been discretized with respect toz through the implicit midpoint rule(

1− δ
4

A

)
vk+1(x) =

(
1+ δ

4
A

)
vk(x), k = 0, 1, . . . , (3)

where the operatorA is given by

A =
(

P − µ
µ

)
− 1

4

(
P − µ
µ

)2

.

The parameterδ = i
√
µ1z is proportional to the step size1z in the propagation direc-

tion. Denoting for brevity∂x = ∂/∂x, from the assumptions of the previous paragraph, the
corresponding recursion (3) in the exterior domain (x ≤ x− andx ≥ x+) is[

1− δ
4

(
1

µ
∂2

x −
1

4µ2
∂4

x

)]
vk+1(x) =

[
1+ δ

4

(
1

µ
∂2

x −
1

4µ2
∂4

x

)]
vk(x), (4)

with initial data v0 = 0. To apply a finite element method in the interior domainÄ =
(x−, x+), we reformulate (3) as a variational problem; that is, we determinevk+1 ∈ H2(Ä)

such that the relation

(w, vk+1)− δ
4

[a(w, vk+1)+ b(w, vk+1)] = (w, vk)+ δ
4

[a(w, vk)+ b(w, vk)], (5)

in which

a(w, v) = 1

µ
(w, gv)− 1

µ
(∂xw, ∂xv)− 1

4µ2

(
∂2

xw + gw, ∂2
xv + gv

)
,

b(w, v) = − 1

4µ2

[
w
(
∂3

xv − 4µ∂xv
)∣∣∣x+

x−
− ∂xw∂

2
xv

∣∣∣x+
x−

]
,

andg = f − µ, is fulfilled for allw ∈ H2(Ä). The expression(·, ·) represents the standard
scalar product in the spaceL2(Ä), while the spaceH2(Ä) consists of all twice differentiable
functions in the weak sense. Since we assumedf = µ in the exterior domain, boundary
terms containingg are absent.
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In the following section we will transform the boundary condition (2) at infinity to
conditions on the values of the quantities∂3

xv j − 4µ∂xv j and∂2
xv j at the finite boundary

points x±. These conditions guarantee that the solution properly decays in the exterior
domain x ≤ x− and x ≥ x+ despite the fact that we solve (1) only within the interior
domainÄ = (x−, x+). To keep the presentation of our method compact, we will represent
the values of the derivatives∂xv j , ∂2

xv j , and∂3
xv j at the boundary pointsx± by v̇ j (x±),

v̈ j (x±), and
...
v j (x±).

3. WIDE-ANGLE BOUNDARY CONDITIONS

3.1. Initial Propagation Step

We now derive our wide-angle boundary condition,specializingto the solution at the
right boundary pointx+; the derivation for the left boundary point is entirely analogous.
For notational simplicity, we further setx+ = 0.

To motivate our recursive technique, we first consider the initial propagation step. For
this step, it is only necessary to solve a homogeneous, linear ordinary differential equation
with constant coefficients. Since an explicit solution to this problem is available, we can
study the influence of the free constants on the asymptotic solution that supplies the desired
boundary condition for the step. The functionv1(x) in the right exterior domainx ≥ x+ = 0
satisfies the homogeneous fourth-order ordinary differential equation

[
1− δ

4

(
1

µ
∂2

x −
1

4µ2
∂4

x

)]
v1(x) = 0,

which has as its general solution

v1(x) = A1 exp(α1x)+ A2 exp(α2x)+ A3 exp(−α2x)+ A4 exp(−α1x), (6)

with

α1 =
√

2µ

√
1+

√
1− 4

δ
and α2 =

√
2µ

√
1−

√
1− 4

δ
. (7)

In the remaining part of this paper we will assume that the square-root function is defined
in such a way that the relationR

√
ζ ≥ 0 holds for allζ ∈ C. This assumption implies that

the relationsRα1 ≥ 0 andRα2 ≥ 0 are valid. The exterior solution therefore only decays
if the values ofv1(0), v̇1(0), v̈1(0), and

...
v 1(0) are such that the coefficientsA1 and A2 in

the general solution (6) vanish. The relationship between theAj in (6) and the boundary
values ofv1 is given through the linear system of equations


1 1 1 1
α1 α2 −α2 −α1

α2
1 α2

2 α2
2 α2

1

α3
1 α3

2 −α3
2 −α3

1




A1

A2

A3

A4

 =

v1(0)

v̇1(0)

v̈1(0)
...
v 1(0)

 .
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By multiplying this linear system with the matrix[
α1α2 α1+ α2 1 0

−α1α2(α1+ α2) −(4µ+ α1α2) 0 1

]
we find, after applying the Vieta root theoremα2

1 + α2
2 = 4µ,

γ

[
α1 α2

−α1α2 −α1α2

][
A1

A2

]
=
[

α1α2v1(0)+ (α1+ α2)v̇1(0)+ v̈1(0)

−α1α2(α1+ α2)v1(0)− (4µ+ α1α2)v̇1(0)+ ...v 1(0)

]
,

(8)

whereγ = 2(α1+ α2). Accordingly, imposing the boundary conditions

...
v 1(0)− 4µ v̇1(0) = α1α2(α1+ α2) v1(0)+ α1α2 v̇1(0)

(9)
−v̈1(0) = α1α2 v1(0)+ (α1+ α2) v̇1(0)

generates a homogeneous linear system from whichA1 and A2 can be determined. Since
the relationsα1 6= 0, α2 6= 0, andα1 6= ±α2 are valid for allδ ∈ i[0,∞), the determinant
−4α1α2(α1+ α2)

2(α1− α2) of the coefficient matrix in system (8) is always non-zero.
Accordingly, for our special choice of boundary conditions (9), (8) impliesA1 = A2 = 0.
The boundary conditions (9) for the functionv1 therefore ensure that the solution in the
right exterior domain has only decaying components. In the following section the above
treatment will be extended to the functionvk+1 for k ≥ 0, corresponding to subsequent
propagation steps.

3.2. Subsequent Propagation Steps

To derive the full transparent wide-angle boundary condition associated with (1) in a
compact form we introduce, as in Ref. [14], the Laplace transforms

Vj (p) =
∫ ∞

0
exp(−px)v j (x) dx

of the functionsv j . The recurrence relation (4) in the exterior domain then becomes[
1− δ

4

(
p2

µ
− 1

4

p4

µ2

)]
Vk+1(p)− δ

4
bk+1(p) =

[
1+ δ

4

(
p2

µ
− 1

4

p4

µ2

)]
Vk(p)+ δ

4
bk(p),

(10)

with the boundary terms

bj (p) =
(

1

4

p3

µ2
− p

µ

)
v j (0)+

(
1

4

p2

µ2
− 1

µ

)
v̇ j (0)+ 1

4

p

µ2
v̈ j (0)+ 1

4

1

µ2

...
v j (0).

From relation (10) we readily see by induction and decomposition into partial fractions
that the Laplace transform of the functionvk+1 in the right exterior domain for arbitrary
boundary valuesvk+1(0), v̇k+1(0), v̈k+1(0), and

...
v k+1(0) possesses the form

Vk+1(p) =
k+1∑
j=1

[
A( j k+1)

1

(p− α1) j
+ A( j k+1)

2

(p− α2) j
+ A( j k+1)

3

(p+ α2) j
+ A( j k+1)

4

(p+ α1) j

]
,
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where the zerosα1, α2 are given by (7). If we further introduce the shift operators by

Vk = sVk+1,

we obtain from (10) the alternative representation[
(1− s)− δ

4

(
p2

µ
− 1

4

p4

µ2

)
(1+ s)

]
︸ ︷︷ ︸

a(p)

Vk+1(p) = δ

4
(bk(p)+ bk+1(p)). (11)

The above expression is the starting point for the subsequent derivation of our transparent
boundary condition.

At the beginning of the section we introducedp as the variable dual to the spatial
coordinatex in accordance with the standard integral definition of the Laplace transform.
An alternative point of view, however, is to considerp as a differential operator which can
be defined in an algebraic way. This algebraic counterpart to the Laplace transformation,
introduced by Mikusi´nski [12], does not offer a practical advantage in the current context—
as long as we consider the transverse direction—and is therefore not employed in this paper.
On the other hand, introducing adiscreteshift operators implements Mikusi´nski’s approach
in the propagation direction, which provides several important advantages. In particular,
the standard procedure for obtaining boundary conditions fromdiscreteevolution equations
such as (10) is to apply aZ-transformation, which is the discrete counterpart of the Laplace
transformation, to perform algebraic operations on the resulting equations, and finally to
transform back to the original domain. Through the introduction of the operator,s, however,
we are able to manipulate the partial differential equation directly without applying forward
and reverse Laplace transforms. The basic fact from the algebraic operator theory is that
power series ins are well-defined operators and they are always convergent.

We next reformulate the boundary condition (2) at infinity for the right exterior domain
as the condition that the Laplace transformVk+1 of the functionvk+1 is regular in the entire
right p half-plane. That is, if the polynomiala on the left hand side of Eq. (11) approaches
zero, our choice of boundary conditions must ensure that the right hand side of (11) likewise
vanishes.

The zeros of the polynomiala that may correspond to poles ofVk+1 in the right half-plane
are

p1 =
√

2µ

√
1+

√
1− 4

δ

1− s

1+ s
and p2 =

√
2µ

√
1−

√
1− 4

δ

1− s

1+ s
.

Hence we have to ensure that the two relations

bk(p1,2)+ bk+1(p1,2) = 0

are valid. Since initiallyv0 = 0 in the exterior domain we can assume by induction that
bk(p1,2) = 0. We thus arrive at the conditionsbk+1(p1,2) = 0, which are explicitly

 1
4

p3
1
µ2 − p1

µ
1
4

p2
1
µ2 − 1

µ
1
4

p1

µ2
1
4

1
µ2

1
4

p3
2
µ2 − p2

µ
1
4

p2
2
µ2 − 1

µ
1
4

p2

µ2
1
4

1
µ2



vk+1(0)

v̇k+1(0)

v̈k+1(0)
...
v k+1(0)

 =
[

0
0

]
.



652 FRIESE, SCHMIDT, AND YEVICK

Applying the Vieta root theoremp2
1 + p2

2 = 4µ leads to the following equivalent form of
the above equations:

1

4µ2

[
p1 1

p2 1

][
p1 p2 p1+ p2 1 0

−p1 p2(p1+ p2) −(4µ+ p1 p2) 0 1

]
vk+1(0)

v̇k+1(0)

v̈k+1(0)
...
v k+1(0)

 =
[

0
0

]
.

This relationship finally yields the transparent boundary conditions

...
v k+1(0)− 4µv̇k+1(0) = p1 p2(p1+ p2)vk+1(0)+ p1 p2v̇k+1(0)

(12)
−v̈k+1(0) = p1 p2vk+1(0)+ (p1+ p2)v̇k+1(0)

for the functionvk+1 at the right boundary point.
To conclude the construction of the boundary conditions, we expand the operatorsp1 p2,

p1+ p2, andp1 p2(p1+ p2) in their Taylor series according to

p1 p2 =
∞∑
j=0

β j s
j , p1+ p2 =

∞∑
j=0

γ j s
j , and p1 p2(p1+ p2) =

∞∑
j=0

δ j s
j . (13)

Sincesj vk+1 = vk+1− j , the right hand side of (12) can now be evaluated in a practical
fashion. The convergence of the above series is shown in Ref. [12, pp. 149]. Applying the
identities

p1 p2 = α1α2

√
1− s

1+ s
and (p1+ p2)

2 = 4µ+ 2p1 p2

gives for the Taylor coefficients in (13)

β0 = α1α2 β j =
−β j−1, j odd

− j−1
j β j−1, j even

γ0 = α1+ α2 γ j = 1

γ0

(
β j − 1

2

j−1∑
i=1

γ j−i γi

)
, j ≥ 1

δ0 = α1α2(α1+ α2) δ j =
j∑

i=0

β j−i γi ,

whereα1 andα2 are taken from (7). Sincev0 is assumed to vanish for the exterior domain,
we finally obtain for the transparent boundary conditions at the right boundary pointx+

...
v k+1(x+)− 4µv̇k+1(x+) =

k∑
j=0

δ j vk+1− j (x+)+
k∑

j=0

β j v̇k+1− j (x+),

(14)

−v̈k+1(x+) =
k∑

j=0

β j vk+1− j (x+)+
k∑

j=0

γ j v̇k+1− j (x+).

Here we have applied a translationx 7→ x + x+ in order to generalize (12) to arbitrary
positions of the right computational window boundary. Note that fork = 0, (14) coincides
with the previously determined boundary conditions (9) for the functionv1.
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In a similar fashion, we can obtain the corresponding boundary conditions

−...v k+1(x−)+ 4µ v̇k+1(x−) =
k∑

j=0

δ j vk+1− j (x−)−
k∑

j=0

β j v̇k+1− j (x−),

(15)

v̈k+1(x−) = −
k∑

j=0

β j vk+1− j (x−)+
k∑

j=0

γ j v̇k+1− j (x−),

for the left boundary pointx−. The equations (14) and (15) guarantee that the functionvk+1

in the exterior domainx ≤ x− andx ≥ x+ satisfies the boundary condition (2) at infinity
and therefore allow the proper solution of problem (1) within the finite subdomainÄ.

4. FINITE ELEMENT DISCRETIZATION AND STABILITY PROPERTIES

4.1. Cubic Finite Elements

We now implement our transparent boundary conditions for the approximate solution of
(1) within the framework of a cubic finite element scheme [17] and further investigate the
stability properties of the resulting method. Such a discretization in the interior domainÄ on
a set of grid pointsx− = x1 < x2 < · · · < xn−1 < xn = x+ leads from the weak formulation
(5) to the algebraic system(

M − δ
4

A
)

vk+1− δ
4

bk+1 =
(

M + δ
4

A
)

vk + δ
4

bk.

Here the sparse, real, and symmetric system matrixA and mass matrixM are

Al m = a(φl , φm) and M l m = (φl , φm), l ,m= 1, . . . ,2n,

in whichφl , φm denote the basis functions formed by cubic finite elements. The vectorsv j

contain the degrees of freedom associated with the cubic finite elements such that

v j =



v j (x1)

v̇ j (x1)
...

v j (xn)

v̇ j (xn)

 ,

while the vectorsb j consist of the boundary terms and are consequently

b j = − 1

4µ2


−...v j (x1)+ 4µ v̇ j (x1)

v̈ j (x1)

0
...
v j (xn)− 4µ v̇ j (xn)

−v̈ j (xn)

.

In this formulation, our boundary conditions (14) and (15) for bothvk andvk+1 generate



654 FRIESE, SCHMIDT, AND YEVICK

the following algebraic system after a slight rearrangement of the boundary contributions:(
M − δ

4
(A + B)

)
vk+1 =

(
M + δ

4
A
)

vk + δ
4

r k.

Here the matrixB is

B = − 1

4µ2


δ0 −β0 0 0 0

−β0 γ0 0 0 0
0 0 0 0 0
0 0 0 δ0 β0

0 0 0 β0 γ0

,

while the vectorr k is given by

r k = − 1

4µ2

k∑
j=1



(δ j + δ j−1)vk+1− j (x1)− (β j + β j−1)v̇k+1− j (x1)

−(β j + β j−1)vk+1− j (x1)+ (γ j + γ j−1)v̇k+1− j (x1)

0
(δ j + δ j−1)vk+1− j (xn)+ (β j + β j−1)v̇k+1− j (xn)

(β j + β j−1)vk+1− j (xn)+ (γ j + γ j−1)v̇k+1− j (xn)

.

The coefficientsβ j , γ j , andδ j are defined through the recurrence relations of the preceding
section.

4.2. Numerical Stability

Last, we demonstrate that our propagation method is unconditionally stable. Our argu-
ments are in principle only valid in exact arithmetic. However, since we are simply solving
a sequence of boundary value problems in the interior domain, our method is expected to
remain stable for floating-point arithmetic as well. This expectation is consistent with the
results of the numerical examples to be displayed in the following section.

The starting point for the stability analysis is obtained by multiplying the exterior problem
(4) with each of the exterior solutionsvk andvk+1 and subsequently integrating by parts.
We then have

(w, vk+1)± − δ
4

[
a(w, vk+1)± + b(w, vk+1)±

]
= (w, vk)± + δ

4

[
a(w, vk)± + b(w, vk)±

]
,

with w ∈ {vk, vk+1} and

a(w, v)± = − 1

µ
(∂xw, ∂xv)± − 1

4µ2

(
∂2

xw, ∂
2
xv
)
±,

b(w, v)± = ± 1

4µ2
[w(x±)(

...
v (x±)− 4µ v̇(x±))− ẇ(x±)v̈(x±)],

where the notation(·, ·)± represents theL2 scalar product in the right and left exterior
domain. In the derivation of the above equations we explicitly use the equivalence between
our transparent boundary conditions (14) and (15) and the boundary condition (2) at infinity.



BOUNDARY CONDITIONS FOR ONE-WAY HELMHOLTZ EQUATION 655

If we add the equations above to the weak formulation (5) of the interior problem we arrive
at the identities

(w, vk+1)R −
δ

4
a(w, vk+1)R = (w, vk)R +

δ

4
a(w, vk)R,

in which

(w, v)R = (w, v)− + (w, v)+ (w, v)+ and

a(w, v)R = a(w, v)− + a(w, v)+ a(w, v)+,

since the boundary terms atx± cancel. By combining the equation forvk+1 with the complex
conjugate equation forvk and comparing the real parts of the right and left hand sides we
obtain

(vk+1, vk+1)R = (vk, vk)R,

so that theL2-norm calculated over the wholex-axis is conserved. As our arguments
are equally valid if a finite element approximation is used to solve the problem in the
interior domain, we have established that our method is unconditionally stable for both the
continuous and the discrete case.

5. NUMERICAL EXAMPLES

Finally we demonstrate the performance of our proposed technique with the aid of two
standard optical examples. In an optics context, the functionf in the operatorP of (1)
corresponds to

f (x) = k2
0 n2(x).

Here,k0 is the vacuum wave number of light, whilen(x) is the refractive index. We assume
that the refractive index in the exterior domain is identically equal ton0 so that the parameter

µ = k2
0 n2

0.

Our initial conditions are of the form

v0(x) = 1√
a
√
π/2

exp(−(x/a)2) exp(−i
√
µ x sinϕ),

with ϕ = π/6.

5.1. Homogeneous Medium

We first evolve a Gaussian beam of widtha = 10µm for a vacuum light wavelength of
1.55µm in a constant refractive index medium withn(x) = n0 = 1. The interior domain is
Ä = (−75, 75) µm, the propagation step size is1z= 0.4µm, and the propagation length
is 400µm. Our computation for 1281 equally spaced grid points inÄ leads to Fig. 1, which
displays the absolute value|v| of the functionv. The contour lines in Fig. 1 correspond to
amplitudes separated by an order of magnitude from 10−1 to 10−8. The residual reflection
present in the figure, as shown extensively in [14], is associated with the fact that our
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FIG. 1. Contour plot of the magnitude of the functionv for a Gaussian beam propagating in a homogeneous
medium for 1281 grid points.

transparent boundary conditions assume a continuous interior problem. Accordingly, the
reflections must tend to zero as the number of grid points in the interior domain is increased.
Instead, repeating our computation for 2561 grid points yields the results of Fig. 2, indicating
that the boundary reflection is greatly reduced.

To study the sensitivity of the interior solution with respect to the width of the com-
putational domain, we repeated the simulation of Fig. 1 with computational domains of
different widths and compared the results. Thus in Fig. 3 the solution of Fig. 1, which
was obtained on the domainÄ = (−75, 75) µm, is compared both with a simulation on
Ä = (−150, 150) µm and with a simulation onÄ = (−300, 300) µm, where both the spac-
ing between transverse grid points and the propagation step length are fixed. (The solutions
on the larger domains are projected after the simulation onto the smaller domain.) In the
figurevlarge refers to either of theÄ = (−150, 150) µm orÄ = (−300, 300) µm calcula-
tions whilevsmall is computed withÄ = (−75, 75) µm and|| · || is the discreteL2-norm
(vH Mv)1/2. As expected, the error is nearly independent of the computational domain width.
The largest absolute error, which occurs at the point where the maximum of the Gaussian
coincides with the boundary, is on the order of the transverse discretization error. Indeed,
this discretization error, which governs the rate of convergence, can be obtained from a
graph of theL2-norm of the discrete interior solution as a function of propagation distance

FIG. 2. As in Fig. 1, but for 2561 grid points.
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FIG. 3. The deviation of the fieldv computed on the domain,Ä = (−75, 75) µm, of Fig. 1, from solutions
computed on larger domains using the same spacings and boundary conditions. The error is nearly independent
of the width of the computational domain, as evidenced by the nearly identical error curves.

for differing numbers of interior grid points, as in Fig. 4, which graphs the results of cal-
culations performed with 641, 1281, 2561, and 5121 grid points in the interior domain.
The magnitude of the reflections vanishes asO(1x4) as a consequence of the cubic finite
element discretization of the interior problem. Observe that the discretization error for 1281
points is about 10−7, which is nearly identical to that obtained in the previous figure.

5.2. Refraction in a Layered Medium

In Fig. 5, we display the reflection and refraction of the Gaussian beam at an interface
between two homogeneous materials with different refractive indexes. Here, the vacuum
light wavelength is 0.51µm, the parametera in v0 is 1µm, the computational domain is
{(x, z) ∈ R2 : |x| < 8, 0≤ z≤ 20}, the step size is1z= 0.0125, and the mesh width is
1x = 1/128. The refractive index distribution is given by

n(x) =
{

1, |x| < 4

1.5, otherwise.

The contour lines in Fig. 5 correspond to|v| = 0.1, . . . ,0.8 while the dotted lines indicate
the positions of the material interfaces. We remark that we obtain the same result if we set
the boundary pointsx± equal to the location of the discontinuities in the material parameters
and keep all other parameters fixed (so that in particularn0 remains equal to the refractive
index in the exterior domain).
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FIG. 4. TheL2-norm in the interior domain for 641, 1281, 2561, and 5121 transverse grid points.

FIG. 5. Contour plot of the magnitude of the solution in a horizontally stratified medium.
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6. CONCLUSIONS

We have applied Mikusi´nski’s operational calculus to derive transparent boundary con-
ditions for the wide-angle approximation (1) of the one-way Helmholtz equation. The
resulting numerical method, which we have implemented with cubic finite elements, is un-
conditionally stable. The accuracy of the formalism has further been established through an
analysis of the reflection of a Gaussian beam from the computational window boundary as
a function of the grid point spacing. Although not considered here, wide-angle propagation
methods based on the [2, 1]- or [2, 2]-Padé approximations to the square-root operator could
in principle be analyzed with a straightforward but algebraically more complex extension
of our procedure.
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